This week Carrie and Hannah of @HannahMakes got together and soldered up their projects - a sawtooth organ kit and NFC companion cubes, respectively. They got to chatting about Hannah's introduction to STEM, her current work as a special effects specialist, her NFC PCBs and what she plans on using them for, her Stormtrooper lamp project, tea dunking robot arm, and her latest work in progress - an NFT attached to real physical hardware! You can find Hannah on Twitter and YouTube!
(1:14 – 12:44) Education and Path into STEM
Carrie: I would love to know about your path into STEM. When did you first know that you were kind of excited about technology and things and electronics? How did you get into it? You have a master's in theoretical physics, if I’m correct? Hannah: I do, yeah. Carrie: How did you get from there, which is very abstract, to actually making real-world things with your hands which is very, not abstract. Hannah: Definitely. Well, it's weird because my journey into STEM started in quite a traditional way, just doing a pure science degree thing. I super enjoyed it. But then when I finished my master's, I was thinking, well, where do I go now? It's quite common to do a PhD afterwards, but I didn't find that one vein of science that was my niche – the thing that I really felt like I could commit myself to for three years. I'm too much of a magpie; there are too many things that grab my attention. There was no way I could settle down and do one area of science for three years. So, I was like, well, what do I do now? Carrie: What were you studying in theoretical physics? What drew you to that to that course of study? Hannah: Well, I got really into particle physics when I was younger, I think, because I was kind of growing up around the time that the Large Hadron Collider (LHC) came online. So, it was kind of just when I was getting to the really exciting science in school, there was a big, real-world thing that was science in action. I kind of wanted to be a part of it. I love telling the story how I was nearly, technically, sort of a co-discoverer of the Higgs boson. Carrie: What! That is super cool. I now want your autograph for sure. Hannah: I’ll stick one in the post. But I think that the story of being almost a co-discoverer of the Higgs boson is actually just as good as being a co-discoverer of the Higgs boson. So, when I was doing my masters, one of the projects that we could choose to do was the background calculations for the LHC. Because, of course, to know that you've got a signal, you need to know what background you're expecting to be able to subtract that off and see your signal. But it turns out that these background calculations, you need tons and tons and tons of them. They're actually really tedious to do, so they were just getting loads and loads of masters students to do these calculations, so that they get their names on the papers, having contributed research that had helped to discover the Higgs boson. But in return, they had to do a year if some of the most boring calculations. So I was on the fence, like, oh, wouldn't it be great to be able to say I was a co-discoverer of the Higgs boson, but then I realized that the story of saying I was nearly a co-discoverer of the Higgs boson was just as good, but I don't have to do any of the boring calculations. Carrie: Like, I could have been, but it was just too boring for me. I like it. So, you were like, yeah, this is too boring, I need to put together some cool electronics. Hannah: Well, for my masters, I did. It was like solid state physics; I was researching thin films of helium adhered on a graphite substrate to see if they go super fluid, but only theoretically, I didn't touch anything practical. In fact, I switched to the theoretical because I did some practical labs lower down in my undergrad and I was so bad at them. I was actually a danger to myself and other people in the lab. So, I switched onto the theoretical degree and now I've just sort of come full circle back to making physical things and kind of doing the practical aspect much later. I'm pleased to report I'm a lot safer now than I was back then; I remember this one particular lab that we had, that we were meant to just be doing an experiment, to calculate the magnetic field. I managed to get it so wrong that I was out by two orders of magnitude! If the Earth's magnetic field is actually that strong, all the iron would be pulled out of your blood. Carrie: That totally reminds me of a lab that we did in undergrad. It was the infamous bucket lab. All engineers had to go through this one course, and it was a lab course in a whole bunch of different disciplines. There was this bucket lab where the general problem was you had a bucket with water filled up to a certain level, suspended on a string and you had a sign for a storefront on this string. You had to calculate the level of water needed in the bucket so that when you twisted it, it would rotate and change once per second. Because, you know, storefront owners, this is a totally common way to put a sign out, you know? But yeah, you didn't have exactly the bucket in the store, so you've had to sort of model it and then perform your experiments in the lab and then extrapolated onto the actual bucket and all of that stuff. I’m pretty sure the amount of water in our bucket was light years. Hannah: That is excellent. Carrie: Nobody knew what the right answer was. This lab was absolutely the lab with the story that every year you heard about it before you took this course. It was the bucket lab and people got nano meters of water all the way up to light years, like we did. Hannah: I think it's better to be over-prepared so having more water than you needed, even if it's a couple of galaxies worth, is definitely the right way to go. Carrie: Right? It's a good resource. Oh, that's hilarious. So, how did you very first get into STEM? Was it in high school, before that, did you always kind of play with toys that were a little geeky and nerdy? Hannah: Yeah, I think definitely. Just a nerd from the start. I mean, everybody loves Lego. But all of those kinds of kits, I remember distinctly now, and it's a memory that I'd forgotten for a really long time. Now kind of recently since getting into electronics more specifically, I remember getting Real Robots magazine when I was a kid and I used to absolutely love it. You don't see so many of these now, because I guess print media with the internet is kind of not what it used to be in terms of popularity, but it was a magazine and every week you got another little piece of your robot that you would add on and there'd be a couple of pages for how to plug it in, which bits to connect. It was all really simple, just JST connectors or something to kind of plug all the boards in together and just a couple of screws and standoffs. But you built over weeks, this robot that went from just being a thing that blinked a couple of lights to it can follow a line. Then in fifth season or something, you got to make a remote control and you could drive your robot around. The idea that you built that was just mind blowing. Carrie: That’s super cool. Hannah: Yeah, and I absolutely adored that. It was so funny because I just kind of remember looking at those circuit boards and thinking that's actual magic. This thing has a brain; it can do stuff and this tiny little square with these just anonymous bits of metal on is making it do that and I wanted to know how all that works. I kind of don't know where I sort of fell out of love with it, and now I've come all the way back to it. It’s a nice feeling. Carrie: That is super awesome. So, then you're in school and you have master's degree and what kind of propelled you into playing in the realm of the physical again? Hannah: Well, I started working for New Scientist Magazine pretty much straight out of Uni. I had no idea what I wanted to do. It had to be something STEM related, but beyond that, I had no idea. I remember going to a career fair and being just so lost and not knowing what I wanted to do that I just decided I was going to work for whoever gave me the best freebies. I came away from there and I looked at my bag and I went; I actually don't think the atomic weapons establishment is me. Maybe this was a bad strategy. Maybe I'll have to try and look for a proper job in a more traditional the way. I just got really lucky; New Scientist was advertising for an intern just when I was searching for something. I applied and I got in and I spent five beautiful years being a sort of editor and sort of general dog's body. Hannah: I kind of had this idea that the maker movement was happening; people were in their bedrooms and making these cool things with technology and as a science and technology magazine, shouldn't that be something that we're covering? So, I started asking around and saying, “Why isn't this something that we're talking about? Why aren't we writing anything about it?” Eventually they said, “Well, if you think it's so good, why don't you write about it?” At the time I just kind of knew it was a thing, but I was nowhere near it. I didn't have a 3D printer and I didn't know how any of it worked. I heard of an Arduino, but I'd never bought one or used one. They were like, “Why don't you write about it?” So, I started writing about it and I thought, “Actually I’m going to have to kind of get involved to kind of know what it's about.” So, I bought an Arduino, and I made a little project and thought, “Well, actually that was quite cool, and everyone seemed to enjoy that.” So, then it started, and it grew into this column where every week I'd make a daft invention and write about it. Over time, I just realized that I liked coming up with the ideas and making the dumb thing more than I enjoyed writing about it and the rest of my day job. So, I was kind of like, I wonder if I can just make that the whole job instead of having to do the other bits. (12:50 – 19:05) Special Effects & Other Projects Carrie: So how long have you been pretty much full-time maker, content creator on your own? Hannah: At the minute, I am a special effects technician. Carrie: Oh, okay, cool. Hannah: I've been doing that for about a year and it has been a wild year. It has been amazing! I'm just incredibly lucky that it kind of, in the couple of years that I was working part-time and trying to build up some skills with the idea that I wanted to do something that was more practical and more connected to physically making things. I just got this opportunity. I'd managed to teach myself just about enough that somebody took a chance on me and let me come and work in their workshop. I've just spent a year trying to catch up to all the incredible people that I work with, who are all so talented and know so much about making. I could barely use a hand drill a year ago when I got there and now, I’m doing 7-axis CNC just like, “Yeah, that's fine, that's normal,” but it's just such a lot of fun. I'm so lucky to have all the cool things to play on now. Carrie: That's cool. So, you're actually in the realm of physical object, special effects, not computer-generated special effects, which is what I think, and a lot of people think, of as special effects these days are people creating massive explosions on the computer. So, can you talk about any of the things that you've done? Is that okay to ask? [Hannah: There's probably some that I can, there's definitely some that I can't and for some reason, whenever somebody asks me the question, the ones that I can't talk about are the ones that to come to the forefront of my mind. But I remember one of the first things I did, it was making an alarm. That just sort of like blew my mind. Because I kind of thought, surely you can find one of these, these exists. Why do I need to make one? Carrie: I guess, what is the line between, I guess the prop department and the special effects department when it comes to physical objects like that? Or is there kind of really a no line there? Hannah: Yeah, I think it comes down to what they needed to do. Because this alarm clock, they had this one that they wanted me to basically copy. They were like, “We want this, but we want it an inch bigger. We need to be able to control the time off screen. We want to zoom in and we want to push a button to have the minute tick over between two different times.” But then it still has to be a clock because it's going to be in the background of the scene. It was a harder problem than it kind of seemed, because you kind of go, “Yeah, I can make a clock.” Then 10 minutes later, “Oh, my God, nobody makes any screens that are square and those dimensions, this might not be possible.” Then you’re trying to design a little menu so that the people who were on set with this prop will be able to set the time and do what they need to do. Hannah: You're like, oh, I guess I need to make that way more obvious. Because if I'm kind of touching the buttons, I know how to use the raspberry PI desktop, but maybe they haven't seen it before and it's going to need to launch automatically. It's just a whole different level of thinking, which you folks probably experienced with kind of making kits and soldering kits for people. It's really different to make something for yourself that you know how to use. That was kind of an adjustment; figuring out how to design for somebody else to be able to interact with what you've made. Carrie: Definitely, definitely. Some of our stuff has kind of popped up a little bit sporadically so far. Based upon things that it was like, “Oh, I need this thing and if I put a little bit of extra time into it, I could actually make it into a product that I think that people could use.” But yeah, there are definitely challenges because you don't know necessarily what people are going to have trouble with and they're going to be different things. I have trouble with being more experienced and stuff, but it's definitely helpful having Robyn design some of the soldering kits because she's newer to electronics. Those were some of the first kits and boards that she designed so having a person who's at that level, designing a kit for other people who are close to that level, is a little bit of a better fit. Hannah: Yeah, it's really hard to predict sometimes when you have some knowledge of some information, what things other people will or won't know about the same thing. That's the really difficult thing about even writing tutorials, knowing which things to describe or not; that's the dark art of tutorial writing. Really. Carrie: Yeah. Trying to pretend that you're a blank slate, right. Come at it from that perspective. I mean, UIs take a lot of code. The first one that I developed was for this accessory for a yarn winding tools, so it was a controller for this yarn winding tool. I had made a prototype where you hit a button and it did this and it started and stopped and I was like, “Woohoo!” I thought that that was going to be the majority of the code and the hard part. Then it turns out that the user interface for handling button presses and going through a menu structure and pressing up and down and incrementing things – that actually was most of the code. The control scheme for the winder was super easy. Hannah: Yeah, I can imagine. You have to ask yourself questions, like what would happen if they pressed every button at once? You have to stop that part of your brain that's like, why would somebody do that? Because somebody will, somebody will do it just to see what happens and you have to be prepared for that eventuality. Carrie: Yup, absolutely. (20:59 - 28:17) RF Tag PCB Carrie: I would totally love to see more of your RFID tag PCB. And please tell us all about designing it because that was your first PCB design and that is a super impressive first project. It's a meaty one. Our first projects around here are blinky boards and yours was just like RFID tag. Hannah: I'm just actually- I'm just really, really bad at things like scope creep. I just kind of, you know, it started off as a board with an LED on it and it ended up as, “Actually why don't I just add an NFC tag?” That was completely straightforward, a natural progression, but yeah, I'll get them out. Carrie: That makes sense. Hannah: I'll bring one close. Carrie: Oh, that is so cool. I really love how there are skinny pieces of solder mask just to support the silk screen that's on top of them. Hannah: Yeah. Yeah. Carrie: I saw that on your photo, and I was like, “Oh, that's clever.” Hannah: I keep moving it the wrong way. I don't know my left from my right. Carrie: That is cool. Nice. Hannah: Well, I heard, because I don’t know since this is my first board, I haven't experimented with solder mask and silkscreen before. But I'd heard that silkscreen doesn't adhere that well on its own to the copper or the FR4, that adheres better to the solder mask and that some board houses, if there's any silkscreen that's going over copper, they'll remove it because they assume that you've made a mistake. It was a thing that was a preemptive design idea to put the solder mask under but I actually really liked the way it's turned out. So, it's been a really good, good thing to do. Carrie: Yeah, no, it's super cool. And you're exactly right. I think a fair number of board houses use automatic software that actually imports your Gerbers and automatically cuts out any silk screen that is overlapping a bare copper part. Usually for a normal board design, that would mean that you accidentally put silk screen, like a reference designator or was overlapping a pad something and then if you do have a poxy silkscreen on that part, then it's hard to solder to it, you know? I mean, I remember the good old days when they didn't do those kinds of checks and when they weren't built into your circuit board layout programs and you would get boards that would have that problem if you weren't careful about it. Hannah: Because it is confusing when you first open up all the different layers and then even just daft things, like it took me I don't know how long to figure out there's text on the back of the board and to figure out which way that had to appear on screen. Carrie: Can you hold that up? That's the- oh, okay. So that is, is it a cutout? Both in the silkscreen and in the copper? Hannah: Yup. So, it's just the bare FR4 there. The thinking is that when you kind of hold it up to the light, the light should kind of shine through the letters. I would've loved to have the lettering in copper but because it’s an RFID antenna, you don't want to have any copper in the middle of where the antenna is. Carrie: Yeah, did you use KiCAD for it? Hannah: I used Eagle. Carrie: Eagle, oh okay, I’m not as familiar. Hannah: That's what we use in work. I haven't needed to use it for anything in my job yet, but this has been my project to try and skill up so I can bring that to what I'm doing. For Eagle I couldn't find a really easy way of bringing the artwork in or drawing the artwork. There was one user language program that would take a bit map and basically turn it into lots of tiny polygons to try and approximate the art. I've heard that it's slightly easier in KiCAD. Carrie: Yeah, it's easier in- I go back and forth between “Key-cad” and “Kai-cad”. I don't know, I don't care however you say it. It’s actually easier there than it is even in Altium, which I've used a lot professionally. It's still a very difficult process in all circuit board layout software, which I think is kind of interesting because yes, the automatic ones, like Altium, will do some converting of a Microsoft bitmap or something like that. Basically, you have to go through this crazy obscure process of pasting an image into Word, copying it, and then pasting it into the circuit board layout program. Then it does this convoluted process of creating a whole bunch of polygons from your artwork. Carrie: Most of the time it creates a shape that is so complex that anytime you try to manipulate it, it just crashes or bogs way down. I mean, the good part about how it's done in Altium is that you do actually have the ability to scale it after you've imported. KiCAD makes you import it as part of a footprint, which is a little weird, and once you import it, the size is fixed. So, trying to get something to fit perfectly, there's a lot of back and forth and back and forth and that's painful. I don't know if the Shenzhen 2, an add on for KiCAD that I haven't really played with much that's for Inkscape, but I don't know if that's any better. I've also heard that it doesn't, it might not work with the latest version of Inkscape yet. Hannah: KiCAD is something I definitely want to get into, because I just think any free open-source software, like big tick. I mean the good thing is that Eagle is at least free for just two-layer boards. So, it's something that beginners can just download and use and make a simpler two-layer board where it's for free. In general, I try as much as I can to just use free open-source software where it's easy and available. Because I just think that it's a great thing to support and if I can, I will. So KiCAD is definitely on my list. (31:01 – 35:53) Stormtrooper Project Carrie: Tell us about some of the other cool things that I'm seeing on your desk. Hannah: What else have I got around here. Carrie: Tell us more about the storm trooper, that one is backlit. What is it? What do you got going on there? Hannah: I can take it apart. So, it's just, this wasn't really- this was a sort of one day build, type quick project for Valentine’s Day. Carrie: One day? Dang, I'm very impressed by the speed in which you crank out a project. That looks legitimately way nicer than what one of my one day projects would have looked. Hannah: Oh, I’m sure that's not true. It's just because it's far enough away from the camera that nobody can tell what a mess it secretly is. I'll show you the wiring now it's just, there's literally- Carrie: All I can see are beautiful LEDs. Hannah: It was hot glued in there and it's now literally not anymore. It's not too much of a mess in there; I can't remember if I've actually got one that turns all of these [LEDs] off, I think. But that was just a Valentine’s Day project. I realized that the things that I bought for Valentine’s Day weren't going to arrive in time and I was like, “I'm going to have to make something.” I can't really take credit completely for the design because it was entirely inspired by this really cool dinosaur lamp that I saw on Thingiverse. Hannah: There was a link to it in the tweet that I did about this. I should have had the link ready. I can't take credit for the idea, but there's just kind of dinosaur shaped, and I thought it was a really neat little idea because it's just a really simple 3D print. All you've got to do is kind of extrude the outer edge of the shape that you want the lamp. Then to diffuse the LEDs, it's just a two or three-layer, white PLA print. It's a panel that just slots into that print like that. Because there's an inch or two between the back panel and the front, that's just enough distance to diffuse the LEDs really nicely. I hadn’t seen 3D prints used for diffusing LEDs much before, and then I saw them on this dinosaur lamp and I thought, “Hey, that's such a great idea. That's \ the bane of every maker's existence – how do I diffuse my LEDs? Carrie: Yes, yes, it is a challenge. Hannah: That was a really fun strategy, I thought, to just use it. It's nice because a lot of the makers that I know and that I follow, have 3D printers or have access to 3D printer. That's becoming a lot easier now and as the prices are getting lower and there's more information out there; it's way more feasible for people to either own a 3D printer or have access to one. Whereas sometimes you see really amazing builds, and you want to kind of make one yourself and then you figure out that you need a metal mill and a lathe and all the equipment that you don't quite have room for in a flat in London. It's just nice that the project is so self-contained and if you have a 3D printer, or access to a 3D printer, and a soldering iron that's basically all you need to make something like that. It feels like quite a chunky, kind of significant build for those more easily accessible tools, I guess. Carrie: Yeah. Definitely. I was going to say, I thought just from looking at it, I was like, “Oh, that was probably laser cut. Right? Because it looks like acrylic, you know?” So that's really cool that it was 3D printed because a lot of times more people have access to 3D printers than laser cutters, at their homes at least. Maker spaces will generally have both, but yeah. Cool. Very cool. Hannah: Yeah. I guess, so I recycle a lot of the parts from old builds. So many of the things that I've made, they’re in pieces or have been recycled into kind of other things. But that always means that when I kind of do show and tell I'm just like, I have a pile of wires, like this was a robot, which is a lot less impressive than having an actual robot. 41:39 – 44:50) Tea Dunking Robot Carrie: So, the other thing I want to know more about, because I was trying to find a video on it, but I didn't see one. The tea bag dunking robot, because I was like, “That's cool and I think super useful.” Hannah: You know what, I think I have bits of him under the table. If I could disappear for a minute. So, his brain has been recycled for another project sadly, and I don't know if you can tell, but he's actually extremely dusty. Carrie: Nope, looks great. 720P it'll look fantastic to all of the viewers! Hannah: Yeah, I couldn't part with it, it's one of the very first projects I made and it's kind of terrible and wonderful and it will always occupy a special place in my heart. We've got our on/off switch there and then a dial so that you can select your number of dunks. Carrie: Nice, excellent. Hannah: Some team might need longer and then a little LCD screen that will tell you the number of dunks that you selected and then the number of dunks remaining. Then a tiny, extremely underpowered, wobbly servo arm to do the dunking with I think a bit of Lego that I've just cut a piece out of to make the teabag hook and quite a lot of tape. Carrie: I totally want to make one of these for my mom. Hannah: The very first time I switched it on, I just absolutely hadn't thought about trying to ramp the motion at all. So, it was extremely aggressive tea bag dunking. By the time we stopped laughing I think more than half of the water in the mug had been distributed around my kitchen. Carrie: Nice, I feel like that should be a setting, dunking aggressiveness. Hannah: Overly aggressive, hopefully version 2 will have an adjustable aggressiveness of the dunking. Carrie: Oh my gosh. (1:42:50 – 1:51:02) NFT Project Carrie: Is there anything else that you want to talk about that you're doing, that you want to share or links or stuff, ways for people to support you and your projects? Hannah: Follow me on Twitter @hannahmakes; there'll be more YouTube stuff coming eventually. Wedding planning has taken over my life. But all of the fun things that we're making for the wedding, like the fun save the dates, we've got these beautiful boards that I've been making on the stream tonight. Then for our wedding invitations, they involve some illusion [Holds up invitation and a pair of anaglyph glasses]. Another thing that I will have coming up, in the not-too-distant future, is a project I'm working on with DesignSpark. If I can move all the mess on my desk to free this wonderful device, this is DesignSpark’s air quality sensor kit which I should really plug in, but I think I've actually run out of power sockets. Hannah: When it’s powered on it's got a CO2 sensor, it's got PM2.5 through PM10 or something, a volatile organic sensor, temperature, and humidity. It's like a little air quality dashboard and it also communicates all that data via MQTT. So, either on a local network or if you connect it to wifi, you can configure it so that it will put that data to the cloud and then you can get that data from the cloud. So, there's a group of us who were doing fun projects with this equity sensor data. You might have already seen Allie of Geeky Faye has done a really cool LED necklace project. Carrie: I just saw that gorgeous, gorgeous work. Hannah: Yeah. My project is a bit weird and maybe a bit controversial, but I'm going to be making an NFT. Carrie: I see, I see why the controversy. Yes. Hannah: The idea is that this NFT is going to be able to change over time with air quality data from that sensor and like update and change and showcase some of the cooler sides of the technological aspects of blockchain and NFT technology. Also, if it gets sold, we're going to sell it to try and raise money for a carbon offset charity. Hopefully, it will turn into air quality art that benefits the planet rather than being terrible for the planet, but it’s all a bit complicated. Carrie: It is. Hannah: A fraught subject, but hopefully it will be just a little kind of harmless exploration of it that will get people talking about air quality. Carrie: Yeah, I mean, that's interesting that it's also tied to a physical thing, which most NFT’s are not, so I like that aspect of it as well. So, does the person who purchases the NFT, will they get the sensor itself or is it just the sensor lives apart from the owner of the NFT? Hannah: The sensor lives apart from the owner of the NFT. So actually, I think what I'm probably going to do is have it update off of this specific air quality sensor for a duration of time. Then for the longevity of it, because if the sensor goes offline or unplug it, then you don't want the NFT to just never update again. So, it might transition to taking that data from a public API that has air quality data and serves that from multiple servers so that it can build a little bit more robustness into that process. But yeah, certainly to begin with, it's going to be taking data live from my air quality sensor. Carrie: “Live from Hannah’s desk. Ooh, I think Hannah might be soldering right now, the air quality has really gone down.” Hannah: “Why did I buy this NFT? It looks like garbage now.” Yeah, so that should be an interesting project. It was one that we started quite a long time ago and I knew absolutely nothing about NFTs when I started it. I wrote a really long article for DesignSpark on all the things that I found out when I was researching them. It's messy and difficult, but I think it's less black and white than I've seen some commentary about it, because I think that's true of most technology. I think my personal motto is that “Technology is a tool.” There's always been a massive outcry about social media. I mean, for me personally, I found it to be a hugely positive force in my life because it's allowed me to connect with a whole bunch of people across the planet that do things that I like and that I can hang out with. Without social media, I wouldn't be here hanging out with all sorts of amazing people, like you, and soldering projects. That's a great thing, but also undeniably, social media has been used for terrible nefarious purposes, but technology is ultimately a tool and it's about how you put it to work that makes the difference. I think that the technology that underpins NFTs there’s maybe even a potential kind of second life for that as a different system, but as it stands, like the way it's being used [Hannah shrugs]. Carrie: Yeah. The majority of the uses are not very good, but I totally agree with you that yes, technology is a tool, and the uses are various. I mean, blockchain in and of itself is really interesting to prove a digital possession of something. Right. I think that is a very useful thing in very many cases, but there are a lot of different ways to enact it. I think it's interesting that people are looking for more sustainable ways to, I mean, it's definitely come a long way since the kind of brute force Bitcoin blockchain method was invented, I guess. But yeah, it's very interesting. There are a lot of pros and cons to all of the different proof of stake versus proof of work. It's a big topic. It's a very big topic, but the shame is popularity of the very, I would say, more frivolous uses of it – to buy memes and it's like, “What does that even mean…” Hannah: Absolutely, just the wild speculation. People just bidding billions of pounds on a JPEG that somebody’s friend made in five minutes and it just kind of doesn't seem; we've got this potentially powerful technology that can do interesting things, and to me, that doesn't seem like the most interesting use of it. So, having NFTs that can update over time and take data from off-chain and to do something with it on-chain. That was something I didn't know was possible and something that I think kind of adds flexibility and potential. I'm not an expert in the technology so I couldn't say for sure if that means that it's got a use case that makes it a vital and useful technology. It's emerging and it's a kind of a technology that hasn't found its niche and its groove, but we’re finding out some of the different things that it can do that aren’t just JPEGs of monkeys and that’s interesting to me. So yeah, hoping to just explore that a little bit. Carrie: Yeah. I think that's cool. I think that's super cool.
0 Comments
Leave a Reply. |
Archives
September 2022
Categories
All
|