Alpenglow Industries
  • Store
    • Through-Hole Soldering Kits
    • SMT Soldering Kits
    • Tools and Accessories
    • Solderless Kits
    • Seasonal Blinkies
    • Programmable Kits for Makers
    • Textile and Yarn Tools
    • All Alpenglow Products
    • Bright Wearables
    • Makerbytes Soldering Kits
  • About
  • Blog
  • Instructions
    • How To Solder
    • Soldering Kits
    • Solderless Kits
    • Build A Blob
    • Tools
    • Coin Cell Power
    • SwitchTrick
    • SMT Garden
    • Foxy Pride
    • FUnicorn
    • Krampus
  • Contact

Solder Sesh #38 Transcript: Lixie Labs

4/5/2022

0 Comments

 
This week we had Halle and Connor of Lixie Labs join us for our weekly soldersesh! While Carrie was assembling up two of the Lixie II displays, she talked with them about their journey from Lixies to Pixies, the process of crowd supplying their Pixie Chroma and the lessons learned along the way, making open source products and getting them OSHWA certified, and we even got to see some of Lady Lixie's rad art!!
​
You can find Lixie Labs on Twitter (and Lady Lixie!), Instagram, and YouTube & you can check out their products on Tindie, Crowd Supply, and GitHub!
Full Stream:
(1:42 – 8:41) How Connor & Halle got Started in STEM

Carrie: So, tell us all about everything. I would love to hear about how your journeys into STEM got started, how your fascination with LEDs got started. Tell us all about how you kind of went from the Lixies to the Pixies and everything.

Connor: Around 2012 I went to school with a guy named Andrew and he told me one day that there was this computer that was $35 and the size of a credit card. I didn't believe him. I thought, “No way, that's got to be a scam.” He's like, “No, it's called a Raspberry Pi,” and he let me borrow it. One of the first examples you can find for Raspberry Po is how to put an LED on one of the pins and then do the little pseudo pin, whatever to set it on. As soon as that led came on, it just clicked for me. Because I had done software before, like websites, but all of that code exists behind a screen and in a different universe. But when the LED comes on, it's literally like a little light bulb.

Halle: It's exciting.

Carrie: It is really exciting. And it's kind of hard to convey how exciting that is until you've actually done it, I think. But yeah, making a thing do a thing is super cool.

Connor: Yeah. So, I stuck with that, and I ended up getting really interested in it and found the Arduino. Adafruit has just thousands of tutorials for how to do this stuff. I end up in 2016, I've got a few years under my belt, and I'm really interested in Nixie tubes because they're just gorgeous, but they're finite – except for the ones that are being made by people like Dalibor Farny. So, they're quite expensive, especially the bigger ones. I saw a few videos of people that had done edge lit signage and stuff before or animations with it and kind of reapplied that with a PCB, a light filter, and then 10 acrylic panes each with a numeral. So that became the LED Nixie, the Lixie.

Carrie: Love it.

Halle: We actually have a Nixie tube here, so you can see how small you actually get them.

Carrie: Yes.

Halle: The smaller ones are cheap, bigger ones are like $150 per tube.

Carrie: Yeah, one of the first things I did on a solder sesh was actually put together a Nixie tube clock. I had had those Nixie tubes sitting around for a year or so, I think I got them for $15 a tube and the last time I looked, I think that they were going for over $20 a tube.

Connor: They're pretty expensive.

Carrie: Yeah, definitely expensive.

Halle: Well, they have expiration dates. That's why it's so hard because if you get an old one who knows, because this one–

Connor: Yeah, this one, I don't have a functioning tens place on the seconds anymore. It got a little bit of burn-in or something.

Carrie: Yup, that's definitely an issue and they're not really being made anymore because it's old tech. Although I guess there are a few places that are sort of doing custom.

Halle: There’s two. Dalibor Farny and then I can't remember the other one, but I know they’re in Ukraine.
Carrie: I was going to say yeah.

Connor: So, the Lixie becomes quite popular, and the original design looked like this. I've got one here.
Carrie: Oh, look at that. Super cool.

Connor: Yeah. So, the 10 panes and then a base here, we'll light this up later to look at it, but it had hot glued tops with wood and acrylic. Once they were assembled, they weren't meant to be disassembled ever, which was kind of unfortunate. If it was damaged or, cooking grease in the kitchen nearby made them a little foggy. So Lixie II was my solution to that and then just leaving the panes as a modular top-loading version of that.

Carrie: Yeah. No, I can see how that would have been, how not being able to take it apart would have been maybe a little frustrating after it sits around for a while right.

Halle: Yeah, it can get dusty. I'm really new to this whole entire world. The first LEDs I lit up were his Pixies, his original Pixies and stuff like that. I'd love to say that I fully understand everything, but most of the time he talks, I'm like, I kind of get you, but definitely if I talked to myself a year ago versus now it's so different. I'm much more of a, I'm a very hands-on artist. I love putting together a lot of products and doing all that sort of stuff. I mainly like the logistics side and the shipping, all that for Lixie Labs.

Carrie: You know, we all have to start somewhere and wherever you start is totally fine. A year from now, you're going to be like, oh my God, I've learned so much just in this past year or two. Hopefully we all never stop learning. Right? I'm a beginner at a ton of things too, because it's impossible to know it all.

(22:35 – 26:23) How the Lixies became Pixies

Carrie: Tell me about how the Lixies became Pixies.

Connor: So, the Lixies, I eventually found these little displays called LTP 305s, and they're these little micro-LED displays that have a 5x7 dot matrix on them. I thought they were so cool and I found a compatible driver chip called the ISFL 3135, or something like that.

Carrie: Say that 5 times fast.

Connor: I realized I could make these little displays chainable, like the Lixies were. So, the Lixies are really easy to add onto later, if you want to make a bigger display, just because they're the neopixel. You just need the three wires and then another one and then another display and another one. I did a similar thing with this ATTiny on the back where these are chainable. They talk one to the next, so you can have a big, long Marquis. And then trying to think, trying to remember my history here. Oh yeah, the pixie. So, they're just pixel Lixies. Then the chip shortage starts to happen. The very first signs of it were I couldn't get, for whatever reason, I couldn't get these LTP 305s very easily.

Halle: Especially the green ones. The red ones were everywhere, but the red ones in photos, they seem a lot dimmer. So, our green ones are what are really selling. So, it was a struggle.

Connor: So, I switched over to 0402 LEDs, basically just cloned it myself and sold those. These were all Pixie pros; these had faster firmware. It ran on assembly code. Then the chip shortage really starts to hit, and you can't get microcontrollers, you can't get the LED driver chip. I kind of had to pivot and in the end, it was for the best, I think it's an easier product. It's a better product. And that's our Pixie Chroma PCBs.

Carrie: Nice.

Connor: They are super easy to chain together. You can put them in little modular printed enclosures like this and make them as long as you'd like, and any color you want. So let me get this plugged in so we can show it. I recently got to make something for myself, in 2019 around the time that Lixie II came out I made myself a little plaque that says, Lixie Labs 1,000 sales. A little 3D printed thing with a Lixie I board on it. Then just this month I got to make another one. Lixie Labs 3,000 sales with my Chromas running on the bottom.

Carrie: Nice with a little infinity symbol.

Connor: And a kind of circuit sculpture thing in the back running it.

Carrie: Excellent. That's super cool.

(32:37 – 38:23) PNP Machines

Carrie: So, with the crowd supply campaign, how ready were you to go when you launched? Was it like, “We have all the parts ordered,” or was it, “We have everything except the order, because we don't know how much demand there's going to be, so we're ready to go but…”?

Connor: So, the way we did it is I got 20 prototype boards completed for myself first, just to verify the design and get photos and write code for it and get that all. So, the code was all completely done. Photos were done, PCB design was done but we didn't order any of the parts until after the money had cleared from Crowd Supply. After a campaign on Crowd Supply ends, you'll have two to three weeks before the money clears, everything's verified on their end, and they send it off. At which point I put in an order to PCBway to get 77,000 LEDs placed on boards. Then when those boards were ready and they came back, one of my biggest warnings I can give other makers is don't forget tariffs. There was a 25% tariff on that whole order. That was $1,600 we weren't expecting, and we had enough to cover it – that didn’t stop us. But wow, it was a sad day.

Carrie: Yeah. Yikes. Well, and it can be hit or miss with tariffs too. Sometimes it'll just sneak through without, and you're okay. But yeah, having to plan on them stinks and it's also hard to keep track of because everything changed very quickly.

Connor: Yeah. The tariffs, the misplaced intent, I believe of those tariffs was to bring manufacturing to be more domestic. I hate to say it actually worked because I just bought a pick and place machine from a really cool guy named Stephen Hawes. Who's been on YouTube for two years building an open-source pick and place kit that he can give out. So, I just bought one of his pick and place kits so that I never have to do that tariff thing again.

Carrie: Yeah, there are a few US places that that I've used for circuit board assembly, but it's definitely more expensive than PCBway, for sure. So, it just all depends.

Connor: I just like the prospect of running a pick and place machine, too. That just seems fun. Even if it is someone domestic, I can outsource it to it just seems fun to me.

Halle: Well and you built two of your own.

Carrie: Oh yeah?

Connor: Yeah. So, the first one, my first pick and place was like $150 3d printer from eBay that didn't even have a heated bed, but I had XYZ movement out of it. Then a specially printed base plate that could take the LEDs from peeled tape with a suction nozzle and bring them over, which is hard-coded G-code to where they go on a PCB for Lixie I. The solder paste was sticky enough to break the suction on the nozzle whenever you placed them down. So, it didn't even have suction changes.

Carrie: That's hilarious.

Connor: I attempted to convert an Ali Express laser cutter kit, like the black extrusion rails kind of ones, to my own pick and place. But that machine Stephen Hawes built just kind of outpaced mine. It has a huge community on it now. So, I just disassembled that the other night and I'm waiting on a new machine.

Carrie: Nice, nice. I will definitely have to check that one out because that one was not on my radar. I've seen – maybe this was a few years ago, like the $2,500 ones on Ali Express and I've always been like, “Hmm…”

Connor: Those Charm High ones on Ali Express, the main problem I think for makers with those is that they are a closed firmware. So Open PNP Project right now is trying to basically take all of those and reverse engineer those machines to make them work. The Lumen PNP is the thing I bought from Stephen Hawes. It's like $1,100 and it looks like one of those laser cutter frames and it's actually really cool how he did it. It comes with all the rails and the fasteners and cameras and motherboards and vacuum, but you print all of your own structural pieces on your own printer from a big list, like a bill of materials.

Carrie: Nice. So, it's definitely like a print your own.

Halle: Which is kind of funny because a lot of companies are clearly moving to that. Like Prusa, you see all the orange you're like oh that was the printed part. That's so cool. The cool thing about that is we can kind of color it to whatever we want. So, we just got this really, really insanely pretty fuchsia pink.

Connor: So, my machine is going to be this wild pink.

Carrie: Nice.

​(52:54 – 58:00) Crowd Supply Process

Carrie: So, we went from Lixies to monochrome Pixies to Pixie Chromas, successful Crowd Supply campaign and now you're just shipping them, right. People can go buy them off of Crowd Supply. Is there any wait time or are you kind of still doing it in batches or?

Connor: The way crowd supply works for anyone who doesn't know, it's really neat. You raise the money, you get the capital, you do your order, and you actually send all of your finished units with special barcode tags in bags to Mouser who is Crowd Supply’s parent company. Then Mouser will handle the individual fulfillment of all of the orders and they also purchased stock for themselves. So, if you sold a hundred of something, Crowd Supply will buy anywhere from fifty to a hundred for themselves. Then they become a vendor for you. So right now, you can go buy a Pixie Chroma kit on crowd supply still, even after the campaign and your order will get delivered at the same time as the backers orders in this first batch.

Halle: Yeah, we shipped everything all at once, all in one box.

Connor: It was terrifying.

Halle: It was so scary. I had to go and meet him at the FedEx store, and we were like, oh, this is the scariest thing we've ever done.

Carrie: Oh man. I can imagine how terrifying that would be.

Halle: It was also weird to have that many units in one; it wasn't a very big box either because they're so tiny. Then they got here, they came in these panels, I depanelized all of them, and Connor tested them. We had a really, really good rhythm going, but then after that we realized we needed headers and I ended up cutting out 80,000 headers in sections of 3.

Carrie: Oh my god.

Connor: Yeah, it was a lot.

Halle: We have 2 pairs of flush cutters, and if I didn’t have the good ones with me or I was at work or something I was just not having it. We have a very destroyed pair and then a good pair.

Carrie: So, I'm like how many episodes of Grey's Anatomy did that take? Or what other things were you watching that has to have like 30 seasons for you to get through all of this.

Connor: We watched American Horror Story and YouTube and whatever we could to pass the time.

Halle: Yeah, we forgot to order the bags for the headers. We didn't want to put the headers just straight in ESD bags. So, I made these little paper, folded things and rubber banded them and I did that about a thousand times.

Connor: And we love her for that because wow it was a lot.

Halle: So, when you get them and you open it up and you're like, oh wow look at this nice little rubber band wrapped around this paper, I had done that a thousand times. It was the most exciting thing ever though, because when we were doing, because my first product with him was the regular Pixie and then moving on to the Pixie Pro. So, whenever I got to cut out, I don't know, 50 headers. “Wow. That was so cool. Oh my gosh look at this batch.” Then you're like, “Oh yeah, we'll go through this whole bag that’ll probably be fine.” We go through the whole bag and we're like, “We have to buy 40,000 more headers!” It was fun though.

Carrie: Yeah. That is super exciting though. I mean sending off that box must have been scary, but also very fulfilling. Right.

Connor: It was like a postpartum depression for me, I felt so useless the day after it was all done. It started in late July on the PCB and then August is when I started the CGI ad that we did for it and all the preparation for it. So finally, this month, March, I finally have days where I'm just kind of waiting because they're all off at Crowd Supply. They’re being forwarded to customers now. So, no one has them yet, I don't have them, and I'm in this weird purgatory.

Carrie: It's the anticipation, right? It's like the calm before the storm of everybody getting them and then posting all about their projects and that'll be super exciting. I mean, that'll be the best part, seeing your things go out into the world and seeing what people make out of them. Right?

 (1:25:42 – 1:32:54) Lady Lixie’s Art

Carrie: Is there anything else that you guys want to tell us about, anything else that you're up to?

Connor: Do you want to show off some art? We should get some background on what Lady Lixie does. She makes the coolest art.

Carrie: Yeah!

Halle: I feel so weird feeling like I'm in the maker community. Cause I'm an artist. I know that that is sort of in the maker community.

Carrie: Absolutely.

Halle: I don't know. I feel like I don't do all the cool stuff you guys do.

Carrie: You do super cool stuff.

Connor: She knows how to color with like yellow, magenta and cyan and stuff. I don’t understand that at all.

Halle: I know that’s something that we’re always polar opposite. I'm so much more pigment based and he's so color based. I’m like yeah just mix those colors and he's like, that's not how that works.

Carrie: Additive versus subtractive, yeah.

Halle: Gosh, I don't know what to show off. I guess, I have a lot of bases in horror art. Is that okay to share.
Carrie: Yeah, anything goes.

Halle: Here in Utah, we have a lot of thrift stores, like a lot of them. I don't want to say privately owned, we have like a lot of chain ones, and our biggest one always has the weirdest, slightly religious art. I love taking the art and just taking those types of paintings and just kind of destroying them. Like taking this boy that I can tell was in a church because of the markings and that’s where the frame originally came from and I just really gory him up and stuff like that. So yeah, I do a lot of stuff like that, I love it. I know my stuff doesn't do anything. It just sits there and looks the way it is. It doesn't change colors. It's just there.

Carrie: Art does things, it makes you feel things.

Connor: Yeah, it moves you.

Halle: And then this is a little creepy guy. I’m not done with his hair application; I still need to give him a full Mohawk all over the front. But his eyes are super shiny because I actually used resin from our resin printer and cured it in our resin curing machine.

Carrie: Nice.

Connor: That’s a hack, that counts.

Halle: I'm starting to try and do, obviously we're not really going to be able to tell, but I'm starting to try and do lithophanes with 3D printing, which you can't really see. I love doing the 3D printing stuff because it's much more, I have to see everything. So coding is really difficult for my brain to process. If I can't see every single part of it all at once I get lost and confused and frustrated and just like, I can’t see it, I don’t get it.

Carrie: It’s a lot of weird compartmentalizing that you have to do with coding yeah. It takes a while to get used to it.

Halle: I learned to do MIDI music. Is that what I did? I think that's what I did.

Connor: She transcribed MIDI to Arduino tone functions.

Halle: Yeah. I wish I had it to show, but I don't, my mom has it. I made her this 3D printed thing with like four different parts that were just stacked together of the Deathly Hallows symbol. Then the front was, we were going to try and put LEDs in it, but it just didn't really work out to try to fit everything inside. I did a little MIDI to Arduino tones playing, you know, just certain songs from Harry Potter. One of the more, I guess, classic maker, things is pottery. So, I'm huge into pottery specifically, things like teapots. I love working with the glazes and stuff like that. The science that goes in for glazes and stuff is just absolutely crazy.

Connor: Glazes will have data sheets.

Halle: Glazes do have data sheets, crazy data sheets. Because they're very, most glazes will just give you cancer, not like state of California cancer, like everywhere around the world.

Connor: Yup. So, do you have a pottery studio that you're a part of?

Halle: I used to be, I used to work at one as a teacher and the manager. But over time it just, it's one of those things where, when the owners don't care enough you kind of got to move on from there. I started out as pottery and then, because I lost my ability to have access to a studio and to fire things and stuff like that, I moved towards other art forms, like sculpting with polymer clay and stuff like that. And now that I've kind of figured out lithophanes I'm really going to try and actually push myself more into lithophanes with LEDs. He's probably going to do a lot of that.

Carrie: Well, I was just going to ask, are you thinking of incorporating LEDs into your art now?

Halle: Yeah, I definitely wanted to take our jig that has the cute little eyes. I've been wanting to just take a Chroma just like this and sculpt a spot into a little robot that I made. That's kind of like that one, where I can plug this guy in and have it be a cute little face. Because I think it would just be adorable to have this standing sculpture that I'm able to paint, but then he has a fully functioning face and stuff. Yeah, it was definitely something we realized that these are perfect eyes.

(1:36:50 – 1:45:30) Open Source & OSHWA Certification

Carrie: So, Bob is asking, “So when are you going to sell the Lixie test jig?”

Halle: We've actually had a few people ask if it's open source. Which I mean, it can be.

Connor: It can be, I just haven’t done that yet. I don’t really have any reservations.

Halle: It only works if you're going to test when you already have. We tested them all already, so hopefully they all work.

Connor: Yeah, the design itself or the firmware that's running the LED checks and that voltage drop a thing, that's definitely something I should generalize and release soon.

Carrie: I was going to say, I think that that is definitely the thing of interest because there are a lot of different people doing different things with addressable LEDs. I think that it would be very interesting to other makers who are doing addressable LED art type of things.

Connor: Yeah.

Carrie: We have a recommendation in the comments to make some money first before making it open source!

Halle: Yeah. Well, open source is just an interesting thing. Who was the guy who said it best about…?

Connor: Oh, Nathan Siedel co-founder of SparkFun. He has a Ted talk online if you guys haven't seen it where he discusses the pros and cons of open source and it turns out by the end of it, there's no real cons. Not really. The obvious ones you would throw up, if someone doesn't understand the open-source hardware community, they'd be like, “Wait a minute. Why? That's like the opposite of a patent? Don't you want a patent?” Not necessarily because there's a lot of creative thinkers out there. People willing to share their work and people that can take your work and make it into something you've never even thought it could do. Even if you have a patent, you're going to get cloned anyways, it doesn't matter. So just make it better for the customer. I’ve had stuff before, like that little vector robot that rolls around, that company went defunct and now you can't do anything until makers go through and figure out how to dump the ROM contents on all the little chips and decrypt it – it's a pain in the butt. Whereas, if it was open source or had an SDK [software development kit] that stuck around, I would still be able to use it as a customer; I would have only benefited if they’d made it open course.

Carrie: Yeah. It is a hard and a scary thing to contemplate too and I think it depends upon your product a little bit. Definitely, I would say that, especially for things that are geared towards learning and are platforms that you can build other things upon, open source is definitely the way to go.

Connor: Yeah. So, I didn't go to school for computer science or anything. I went for graphic design. So, all of this computer science, or programming Arduinos, or writing assembly code, it's just because there was thousands of open source things out there that I could dig into. I could break one thing and say, okay so I now know that that function was called from this one. It's a good exercise just to go pick a simple Arduino library and just read it, just go look at all of it. See how they did it. How the class constructors work or how verbose they are with how many functions they make you do or don't make you do. One of the things I pride myself on with the Pixie Chroma displays is the library is no more complicated than you need it to be. If you just needed to show text, it's like three lines, but if you wanted it to have an interrupt service routine that keeps some animation going inside of the text or something complex like that, you can also do that, but you don't have to know how to do complex stuff to do the basic thing. I think if you can make a product with an Arduino library, especially that is perfectly suited for whoever picks it up. So, if it's brand new, like this your day one, working with Arduinos and wires and stuff you should be able to hook it up with really good comments in the code of how to do so. And if you are super advanced with it, you should be able to have a lot of fun, you shouldn't be bored of it too fast.

Carrie: Yeah, no, I think you've definitely nailed it. Just definitely reading through other people's libraries has helped me a lot. Adafruit’s stuff is really great in that regard. I definitely learned about driving graphic LCDs through their open-source graphic LCD driver. That was really useful. Bob says, he thinks about how to test hardware and code before he actually creates any portions. So, he's all on testing from the beginning and Tom also echoes that open source is the way. You're actually OSHWA certified with the Pixie, too.

Connor: We are yeah.
​
Carrie: Nice. How was that process? Did you have to do a lot of extra work or were you pretty much like, well, we already made all of our documentation open-source and had it online, so it was pretty easy to do.

Connor: It's actually not too bad. So, for anyone who's out of the loop, if you want to get a little mark like this on your PC or an ID that goes with it. The original Lixie was US54. I was really early on that one and then the Pixie chroma is US 2058. All you need to do is make sure that your Arduino code is on GitHub or GitLab or whatever, GitBucket alternative and try to make sure that any hardware files are in an accessible format. So not everyone has Autodesk Inventor or even uses that anymore. So, it counts as open-source hardware, but it's not a preferred way to do it if you have a proprietary file format. I use Eagle for my PCBs and the PCBs are all small enough that the free version of Eagle can still work with them. But if I had a bigger one, I would probably want to do something like KiCAD that anyone can open up. It's like Adobe illustrator versus Inkscape. If you can leave up Inkscape files that's better for everyone. So OSHWA, the Open-Source Hardware Association, is in charge of verifying basically your integrity with how open source you are and make sure you've got that whole checklist, there's nothing really missing there. Once they've signed off on that, you get a permanent ID that you can put on the boards. Then in the future, what's really cool about having that ID on there. is if somebody just completely lost the documentation or how to get to it, they can type in the ID number it'll show up on the OSHWA site and you can get to all of the stuff that was submitted to have it qualified as open-source hardware.
​
Carrie: Very cool!
0 Comments



Leave a Reply.

    Archives

    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    September 2021
    August 2021
    July 2021
    June 2021
    February 2021
    January 2021
    October 2020
    June 2020
    February 2020
    August 2018

    Categories

    All
    Arduino Libraries
    Badges!
    Beginning-electronics
    Binary
    Feminism
    FUnicorns
    Irreverent
    LCD Fonts
    PCBs
    Racism
    Vote!

    RSS Feed

How to Buy Our Things:
​Our Storefront
Tindie Storefront
Digi-Key Marketplace
Alpenglow Yarn (our yarn tools)


© 
2018-2022 Alpenglow Industries
Stay in Touch:
About Us
Blog
Contact Us
Newsletter
  • Store
    • Through-Hole Soldering Kits
    • SMT Soldering Kits
    • Tools and Accessories
    • Solderless Kits
    • Seasonal Blinkies
    • Programmable Kits for Makers
    • Textile and Yarn Tools
    • All Alpenglow Products
    • Bright Wearables
    • Makerbytes Soldering Kits
  • About
  • Blog
  • Instructions
    • How To Solder
    • Soldering Kits
    • Solderless Kits
    • Build A Blob
    • Tools
    • Coin Cell Power
    • SwitchTrick
    • SMT Garden
    • Foxy Pride
    • FUnicorn
    • Krampus
  • Contact